Abstract

It has been proposed to obtain the discrete-time models of switching dynamical systems by observing the states at the switching instants. Apart from the lowering of dimension, such switching maps or impact maps offer advantage in modeling systems that exhibit chattering. In this Letter we derive the nature of the switching map for the special case of grazing orbits. We show that the map is discontinuous in the neighborhood of a grazing orbit, and that it has a square root slope singularity on one side of the discontinuity. We illustrate the above by obtaining the switching maps for two example systems: the Colpitt's oscillator in the electrical domain and the soft impact oscillator in the mechanical domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.