Abstract
Particularly in polyploids, the potential of the high variability of dominant markers such as random amplified polymorphic DNA fragments (RAPDs) and amplified fragment length polymorphisms (AFLPs) in population genetic studies and analysis of breeding systems is reduced due to their dominant nature. In contrast, the criterion of character compatibility is hindered neither by dominance nor by polyploidy as allelic interpretation is not necessary. Character compatibility, which can be used to detect events of genetic exchange (or recombination), is particularly informative if these events are expected to be rare such as in taxa with extensive vegetative reproduction or apomixis. Binary unordered characters such as presence and absence of anonymous DNA markers are incompatible if all four pairwise combinations of character states are present among the individuals studied. Because incompatible character state distributions defy any progenitor–derivative relationship among individuals, they provide strong evidence for genetic exchange. Both the absolute number of incompatible character combinations and the probability of compatibility can be used as a measure of incompatibility. Although these measures may not directly relate to the frequency of genetic exchange, they provide a useful tool to heuristically explore data sets. The most commonly used input for multivariate analyses and analysis of molecular variance in population genetic studies of (dis)similarity of marker distributions are amalgamates of mutation and recombination. Character compatibility can be used to complement these traditional methods of analysis. Advantages and disadvantages of character incompatibility relative to multilocus analysis of modes of reproduction and population genetics are demonstrated with data from RAPDs, isozymes, and restriction fragment length polymorphisms (RFLPs) of the nuclear ribosomal and chloroplast genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.