Abstract

Abscisic acid (ABA) is one of the major phytohormones and regulates various processes in the plant life cycle, for example, seed development and abiotic/biotic stress responses. Recent studies have made significant progress in elucidating ABA signaling and established a simple ABA signaling model consisting of three core components: PYR/PYL/RCAR receptors, 2C-type protein phosphatases, and SnRK2 protein kinases. This model highlights the importance of protein phosphorylation mediated by SnRK2, but the downstream substrates of SnRK2 remain to be determined to complete the model. Previous studies have identified several SnRK2 substrates involving transcription factors and ion channels. Recently, SnRK2 substrates have been further surveyed by a phosphoproteomic approach, giving new insights on the SnRK2 downstream pathway. Other protein kinases, e.g., Ca(2+)-dependent protein kinase (CDPK) and mitogen-activated protein kinase (MAPK), have been identified as ABA signaling factors. Some evidence suggests that the SnRK2 pathway partially interacts with CDPK or MAPK pathways. In this chapter, recent advances in ABA signaling study are summarized, primarily focusing on two major protein kinases, SnRK2 and MAPK. Challenges for further study of the ABA-dependent protein phosphorylation network are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.