Abstract

Autoimmune diabetes is characterized by the selective destruction of insulin-secreting β-cells that occurs during an inflammatory reaction in and around pancreatic islets of Langerhans. Cytokines such as interleukin-1, released by activated immune cells, have been shown to inhibit insulin secretion from pancreatic β-cells and cause islet destruction. In response to cytokines, β-cells express inducible nitric oxide synthase and produce micromolar levels of the free radical nitric oxide. Nitric oxide inhibits the mitochondrial oxidation of glucose resulting in an impairment of insulin secretion. Nitric oxide is also responsible for cytokine-mediated DNA damage in β-cells. While nitric oxide mediates the inhibitory and toxic effects of cytokines, it also activates protective pathways that allow β-cells to recover from this damage. This review will focus on the dual role of nitric oxide as a mediator of cytokine-induced damage and the activator of repair mechanisms that protect β-cells from cytokine-mediated injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.