Abstract

The demand for clean energy is high, and the shift from fossil fuel-based energy to environmentally friendly sources is the next step to eradicating greenhouse gas (GHG) emissions. Solar energy technology has been touted as one of the most promising sources for low-carbon, nonfossil fuel energy production. However, the true potential of solar-based technologies is established by augmenting efficiency through satisfactory environmental performance in relation to other renewable energy systems. This chapter presents an environmental life cycle assessment (LCA) of a solar-photovoltaic (PV) system and a solar-thermal system. Single crystalline Si solar cells are considered for the solar-PV system and an evacuated glass tube collector is considered for the solar-thermal system in this analysis. A life cycle inventory (LCI) approach is developed considering all inputs and outputs to assess and compare the environmental impacts of both systems based on 16 impact indicators. LCA has been performed by the International Life Cycle Data System (ILCD), Impact 2002+, cumulative energy demand (CED), Eco-points 97, Eco-indicator 99, and Intergovernmental Panel on Climate Change (IPCC) methods using SimaPro software. The outcomes reveal that the solar-thermal framework provides about five times higher release into the air (100%) than the solar-PV framework (23.26%), and the outputs of the solar-PV system into soil (27.48%) and solid waste (35.15%) are almost three times lower than those of the solar-thermal system. The findings also depict that the solar panel is responsible for most impact in the considered systems. Moreover, uncertainty and sensitivity analyses have also been carried out for both frameworks, which reveal that the Li-ion batteries and the copper indium selenide (CIS)-solar collectors perform better than others for most of the considered impact categories. This study indicates that a superior environmental performance can be achieved by both systems through careful selection of the components, taking into account the toxicity aspects, and by minimizing the impacts related to the solar panel, the battery, and heat storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.