Abstract

Activity-dependent long-term plasticity of synaptic transmission, such as in long-term potentiation (LTP) and long-term depression (LTD), provides a cellular correlate of experience-driven learning. While at excitatory synapses in the hippocampus and neocortex LTP is seen as the primary learning mechanism, it has been widely assumed that cerebellar motor learning is mediated by LTD at parallel fiber (PF)-Purkinje cell synapses instead. However, recent work on mouse mutants with deficits in AMPA receptor internalization has demonstrated that motor learning can occur in the absence of LTD, suggesting that LTD is not essential. Another recent study has shifted attention toward LTP at PF synapses, showing that blockade of LTP severely affects motor learning. Here, we review the cellular and molecular events that are involved in LTP induction and discuss whether LTP might indeed play a more significant role in cerebellar learning than previously anticipated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.