Abstract

Giant internodal cells of characean green algae have been widely used for studying cellular physiology. This review emphasizes their significance for understanding cytoarchitecture and cytoplasmic reorganization. The cytoarchitecture of internodal cells undergoes pronounced, cytoskeleton-dependent changes during development and in response to environmental cues. Under bright light, internodes develop alternating bands of acid and alkaline pH at their surface that correlate with the differential size and abundance of cortical organelles and, in the genus Chara, with the size and distribution of convoluted plasma membrane domains known as charasomes. Wounding induces responses ranging from chloroplast detachment to deposition of wound walls. These properties and the possibility for mechanical manipulation make the internodal cell ideal for exploring plasma membrane domains, organelle interactions, vesicle trafficking, and local cell wall deposition. The significance of this model system will further increase with the application of molecular biological methods in combination with metabolomics and proteomics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call