Abstract
Abstract There is a global demand for soil data and information for food security and global environmental management. There is also great interest in recognizing the soil system as a significant terrestrial sink of carbon. The reliable assessment of soil carbon (C) stocks is of key importance for soil conservation and in mitigation strategies for increased atmospheric carbon. In this article, we review and discuss the recent advances in digital mapping of soil C. The challenge to map carbon is demonstrated with the large variation of soil C concentration at a field, continental, and global scale. This article reviews recent studies in mapping soil C using digital soil mapping approaches. The general activities in digital soil mapping involve collection of a database of soil carbon observations over the area of interest; compilation of relevant covariates (scorpan factors) for the area; calibration or training of a spatial prediction function based on the observed dataset; interpolation and/or extrapolation of the prediction function over the whole area; and finally validation using existing or independent datasets. We discuss several relevant aspects in digital mapping: carbon concentration and carbon density, source of data, sampling density and resolution, depth of investigation, map validation, map uncertainty, and environmental covariates. We demonstrate harmonization of soil depths using the equal-area spline and the use of a material coordinate system to take into consideration the varying bulk density due to management practices. Soil C mapping has evolved from 2-D mapping of soil C stock at particular depth ranges to a semi-3-D soil map allowing the estimation of continuous soil C concentration or density with depth. This review then discusses the dynamics of soil C and the consequences for prediction and mapping of soil C change. Finally, we illustrate the prediction of soil carbon change using a semidynamic scorpan approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.