Abstract
The endoplasmic reticulum (ER) consists of an interconnected, membranous network that is the major site for the synthesis and folding of integral membrane and secretory proteins. Within the ER lumen, protein folding is facilitated by molecular chaperones and a variety of enzymes that ensure that polypeptides obtain their appropriate, tertiary conformation (Dobson, C. M. (2004). Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3-16; Ni, M., and Lee, A. S. (2007). ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641-3651.). Physiological conditions that increase protein synthesis or stimuli that disturb the processes by which proteins obtain their native conformation, create an imbalance between the protein-folding demand and capacity of the ER. This results in the accumulation of unfolded or improperly folded proteins in the ER lumen and a state of ER stress. The cellular response, referred to as the unfolded protein response (UPR), results in activation of three linked signal transduction pathways: PKR-like kinase (PERK), inositol requiring 1 α (IRE1α), and activating transcription factor 6α (ATF6α) (Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519-529; Schroder, M., and Kaufman, R. (2005). ER stress and the unfolded protein response. Mutat. Res./Fundam. Mol. Mech. Mutagen. 569, 29-63.). Collectively, the combined actions of these signaling cascades serve to reduce ER stress through attenuation of translation to reduce protein synthesis and through activation of transcriptional programs that ultimately serve to increase ER protein-folding capacity. Recently, we and Park et al. have characterized a novel function for the p85α and p85β subunits as modulators of the UPR by virtue of their ability to facilitate the nuclear entry of XBP-1s following induction of ER stress (Park, S. W., Zhou, Y., Lee, J., Lu, A., Sun, C., Chung, J., Ueki, K., and Ozcan, U. (2010). Regulatory subunits of PI3K, p85alpha and p85 beta, interact with XBP1 and increase its nuclear translocation. Nat. Med. 16, 429-437; Winnay, J. N., Boucher, J., Mori, M. A., Ueki, K., and Kahn, C. R. (2010). A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nat. Med. 16, 438-445.). This chapter describes the recently elucidated role for the regulatory subunits of PI 3-kinase as modulators of the UPR and provides methods to measure UPR pathway activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.