Abstract
The D-HMQC (dipolar heteronuclear multiple-quantum coherence) technique is a recently developed NMR pulse sequence particularly suitable for the investigation of spatial proximity between quadrupolar and spin-1/2 nuclei. Compared to the cross-polarisation magic-angle spinning technique applied to a quadrupolar nucleus, D-HMQC does not require time-consuming optimisations and exhibits on the quadrupolar spin a better robustness to irradiation offset and to Cq values and radiofrequency field. Furthermore, the high robustness to irradiation offset makes of the D-HMQC sequence the technique of choice for the structural characterisation of materials especially at high magnetic field. We show here how the D-HMQC can be easily implemented and optimised to give access to the structural analysis of silicate-, phosphate-, carbon- and proton-containing materials. An emphasis will be on describing the most popular dipolar recoupling schemes that can be used in that sequence and providing their advantages and drawbacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.