Abstract

Internalized tumor necrosis factor (TNF) receptor-1 (TNF-R1) recruits the adaptor proteins TRADD and FADD, as well as caspase-8, to establish the "death-inducing signaling complex" (DISC). DISC formation and apoptosis depend strictly on TNF-R1 internalization, whereas recruitment of TRAF-2 and RIP-1 to signal for NF-kappaB activation occurs from TNF-R1 at the cell surface. Findings revealed that TNF-R1 establishes divergent TNF signaling pathways depending on compartmentalization of TNF-R1 to the plasma membrane or to plasma membrane-derived endocytic vesicles harboring the TNF-R1-associated DISC. These data were obtained by a novel technique for the isolation of morphologically intact endocytic vesicles containing magnetically labeled TNF-R1 complexes (termed TNF receptosomes) using a custom-made high gradient magnetic chamber. This chapter describes the protocol of immunomagnetic labeling using biologically active biotin TNF as a ligand coupled to magnetic streptavidin nanobeads, followed by a gentle mechanical homogenization procedure to preserve the morphological structure of membrane vesicles containing activated TNF-R1 complexes. Isolation of the magnetized receptosomes in a high magnetic gradient is described, and the kinetics of TNF-R1 internalization and endosomal trafficking/maturation of the receptosomes is characterized. Using a biotinylated anti-CD95 antibody as ligand and streptavidin-coated magnetic nanobeads for separation in the high gradient magnetic chamber, the immunomagnetic separation approach was additionally applied to characterize the internalization and maturation of CD95 receptosomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call