Abstract

Many natural products contain unusual aromatic β-amino acids or moieties derived therefrom. The biosynthesis of these β-amino acids was first elucidated during a biosynthetic study of the enediyne antitumor antibiotic C-1027, when an enzyme, SgcC4, was discovered to convert L-tyrosine to (S)-β-tyrosine. SgcC4 is similar in sequence and structure to 4-methylideneimidazole-5-one (MIO)-containing ammonia lyases. Whereas the ammonia lyases use the electrophilic power of the MIO group to catalyze the release of ammonia from aromatic amino acids to generate α,β-unsaturated carboxylic acids as final products, SgcC4 retains the α,β-unsaturated carboxylic acid and amine as intermediates and reappends the amino group to the β-carbon, affording a β-amino acid as the final product. The study of SgcC4 led to the subsequent discovery of other MIO-containing aminomutases with altered substrate specificity and product stereochemistry, including MdpC4 from the biosynthetic pathway of the enediyne antitumor antibiotic maduropeptin. This chapter describes protocols for the enzymatic and structural characterization of these MIO-containing aminomutases as exemplified by SgcC4 and MdpC4. These protocols are applicable to the study of other aminomutases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call