Abstract

Precision analyses of the collective motor behaviors have become important to dissecting mechanisms underlying the trafficking of subcellular commodities in eukaryotic cells. Here, we describe a synthetic approach to create structurally defined multiple protein complexes containing two elastically coupled motor molecules. Motors are connected using a simple DNA-scaffolding molecule and DNA-conjugated, artificial protein polymers that function as tunable elastic linkers. The procedure to self-assemble these components produces complexes in high synthetic yield and allows individual multiple-motor systems to be interrogated at the single-complex level. Methods to evaluate cooperative motor responses in a static optical trap are also discussed. While enabling the average transport properties of single/noninteracting and coupled motors to be compared, these procedures can provide insight into the extent to which motors cooperate productively via load sharing as well as the roles loading-rate-dependent phenomena play in collective motor functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.