Abstract
G protein-coupled receptors (GPCRs) represent one of the largest families of cell surface receptors as key targets for pharmacological manipulation. G proteins have long been recognized as allosteric modulators of GPCR ligand binding. More recently, small molecule allosteric modulators have now been widely characterized for a number of GPCRs, and some are now used clinically. Many studies have also underscored the importance of GPCR dimerization or higher-order oligomerization in the control of the physiological responses they modulate. Thus, allosterism can also, between monomer equivalents in the context of a dimer, oligomer, or receptor mosaic, influence signaling pathways downstream. It therefore becomes essential to characterize both small molecule allosteric ligands and allosteric interactions between receptors modulated by canonical orthosteric ligands, in a pathway-specific manner. Here, we describe a simple, radioligand-binding method, which is designed to probe for allosteric modulation mediated by any GPCR interactor, from small molecules to interacting proteins. It can also detect allosteric asymmetries within a GPCR heterodimer, via orthosteric or allosteric ligands. This assay measures time-dependent ligand occupancy of radiolabeled orthosteric or (with adaptations) allosteric ligands as modulated by either small molecules or receptor dimer partners bound or unbound with their own ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.