Abstract

Nickel-titanium (NiTi) shape memory alloys (SMAs) with outstanding shape memory and superelasticity effects are interesting candidates for a multitude of applications ranging from small-scale structures, such as microsensors and stents, to large-scale components used in aviation and automotive industries. After a mechanical deformation, SMAs can resume their initial shape which makes them an ideal candidate material to be used in smart components for various applications. A practical method for joining similar and dissimilar NiTi SMAs is laser welding. However, the thermal effect associated with the laser welding procedure influences the transformation temperature of the welded parts that will significantly impact their super elasticity and/or shape memory effect characteristics. This chapter deals with the microstructural, metallurgical, and mechanical investigations of the laser welding process as well as suggesting effective methods to improve the functionality of the welded parts of NiTi alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.