Abstract

Due to their strong tendency for demixing, immiscible polymers require compatibilization to ensure that immiscible polymer blends with a fine and stable morphology as well as adequate interfacial adhesion are obtained. Classically, compatibilization is performed with either copolymers or nanoparticles. Janus particles, which are particles having two sides with distinct chemical or physical properties, combine the amphiphilic character of copolymers with the physical characteristics of particles. In the present work, compatibilization by means of Janus particles is reviewed, with a particular emphasis on polymer blends. After providing a short overview of the different Janus particle types and production routes as well as their compatibilization mechanisms, the available literature on polymer blends compatibilized with Janus particles is reviewed. Janus particles are more efficient morphology stabilizers, leading to a larger reduction in domain sizes and more significant slowing down of phase separation kinetics as compared to homogeneous nanoparticles. Hence, the use of Janus particles forms a very promising route to generate nano- or microstructured high-performance materials from polymer blends with a tuneable organization on two levels, namely that of the Janus particles at the interface as well as that of the global blend morphology. In this endeavor, one of the major challenges is the development of large-scale production routes for Janus nanoparticles, which would allow their use on industrial scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call