Abstract

Abstract When underlying financial variables follow a Markov jump-diffusion process, the value function of a derivative security satisfies a partial integro-differential equation (PIDE) for European-style exercise or a partial integro-differential variational inequality (PIDVI) for American-style exercise. Unless the Markov process has a special structure, analytical solutions are generally not available, and it is necessary to solve the PIDE or the PIDVI numerically. In this chapter we briefly survey a computational method for the valuation of options in jump-diffusion models based on: (1) converting the PIDE or PIDVI to a variational (weak) form; (2) discretizing the weak formulation spatially by the Galerkin finite element method to obtain a system of ODEs; and (3) integrating the resulting system of ODEs in time. To introduce the method, we start with the basic examples of European, barrier, and American options in the Black–Scholes–Merton model, then describe the method in the general setting of multi-dimensional jump-diffusion processes, and conclude with a range of examples, including Merton's and Kou's one-dimensional jump-diffusion models, Duffie–Pan–Singleton two-dimensional model with stochastic volatility and jumps in the asset price and its volatility, and multi-asset American options.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call