Abstract

A number of analogue models studying caldera architecture and development have been recently performed under different conditions (apparatus, materials, scaling parameters, stress conditions). An overview of the experiments reveals a consistent scenario for caldera structure and development, regardless of imposed boundary condition. In fact, a complete collapse can be summarised through four main stages, proportional to the amount of subsidence, progressively characterised by a: (1) downsag; (2) reverse ring fault; (3) peripheral downsag and (4) peripheral normal ring fault. A brief comparison to natural cases shows that all these experimental structures, as well as their development, are commonly observed, even at various scales. Such a consistency between models and nature suggests a general applicability of experimental results. The four evolutionary stages adequately explain the architecture and development of the established caldera end-members (downsag, piston, funnel, piecemeal, trapdoor) along a continuum, where one or more end-members may correspond to a specific stage. While such a continuum is controlled by progressive subsidence, specific collapse geometries result from secondary contributory factors (roof aspect ratio, collapse symmetry, pre-existing faults). The proposed evolutionary scheme incorporates not only the geometric features of calderas, but more importantly, also their genetic features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call