Abstract

High-performance polymer fibers are indispensable materials for human society and are used in the field of national defense, aerospace, automobile manufacturing and sports equipment, etc. At present, the commonly used high-performance fibers are man-made and oil-based such as carbon fibers, ultra-high molecular weight polyethylene e.g. UHMWPE, Dyneema® from DSM, the aromatic polyamide fibers e.g. Kevlar® from Du Pont and Twaron® from Teijijn Aramid (formerly Akzo Nobel), etc. In principle, these materials are not biocompostable and hence after service life can pollute the environment if not recovered e.g. as lost ‘ghost’ fishing nets in the oceans.Nowadays, some companies make an endeavour to produce these fibers from bio-mass or recycled sources. For example, there are bio-based Dyneema® grades available from DSM from recycled sources and carbon fibers can in principle be produced from polyacrylonitrile, which is made form bio-based acetonitrile as being under development by e.g. Solvay and Aksa/Dow. But these so-called ‘drop-in’ fibers are exactly the same as their fossil-based counterparts, and therefore not biocompostable!Consequently, it will be very meaningful if bio-based environmentally friendly fibers with both high-performance and biocompostability could be traced in Nature and/or developed from biomass to reduce environmental pollution. In this review, several typical well-known natural bio-based (cellulose and silk) and synthetic, man-made, biocompostable polymer fibers (polylactic acid fiber and polyglycolic acid fibers) are discussed as potential high-performance bio-based polymer fibers candidates. Their sources, structure, preparation methods and mechanical properties are discussed and their performance is compared with some standard high-performance fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call