Abstract

Utilization of enzymes as biocatalyst found to have specific advantages over whole-cell bacterial biocatalyst in electrochemical systems. The process of enzymatic catalysis in association with electrodes was found to have several advantages for the specific product synthesis, and these systems were termed as enzyme-catalyzed electrosynthesis systems (EESs). Conversion of carbon dioxide (CO2) to produce biofuels and chemicals through EES is found deliver bioprocesses future generations. The present chapter is focused on the fundamental science of EESs to produce biofuel and biochemicals. The chapter also presents the detailed discussion on anodic and cathodic reactions and the electrode materials involved in the electroenzymatic catalysis. It was found to have influence of enzyme electrode compatibility, application of nanomaterials for the improved enzymatic electrocatalysis, and types of electron transfer mechanism involved in the enzymatic electrochemical systems. This chapter provides a detailed evaluation of all the recently developed enzymatic electrosynthesis systems with prime focus on the factors influencing overall performance and its applications in sustainable development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call