Abstract

Raman microspectroscopy is a noninvasive, label-free, and single-cell technology for biochemical analysis of individual mammalian cells, organelles, bacteria, viruses, and nanoparticles. Chemical information derived from a Raman spectrum provides comprehensive and intrinsic information (e.g., nucleic acids, protein, carbohydrates, and lipids) of single cells without the need of any external labeling. A Raman spectrum functions as a molecular "fingerprint" of single cells, which enables the differentiation of cell types, physiological states, nutrient condition, and variable phenotypes. Raman microspectroscopy combined with stable isotope probing, fluorescent in situ hybridization, and optical tweezers offers a culture-independent approach to study the functions and physiology of unculturable microorganisms in the ecosystem. Here, we review the application of Raman microspectroscopy to microbiology research with particular emphasis on single bacterial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call