Abstract
Abstract We report a systematic theoretical and experimental study of the limits to spatial resolution for stimulated emission depletion (STED) superresolution fluorescence microscopy using continuous wave (CW) laser beams. We develop a theoretical framework for CW STED imaging from point fluorescent emitters and calculate the dependence of 2D spatial resolution on the power of the CW excitation (pump) beam, as well as the power, contrast, and polarization of the CW STED “doughnut” beam. We perform CW STED experiments on (non-bleaching) nitrogen vacancy (NV) color centers in diamond and find good agreement with the theoretical expressions for CW STED spatial resolution. Our results will aid the optimization and application of CW STED microscopy in both the physical and life sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances In Atomic, Molecular, and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.