Abstract

This chapter discusses limits of gate dielectric scaling for advanced metal oxide semiconductor field effect transistor (MOSFET). We will review details of hafnium oxide (HfO2) gate oxide and how HfO2 can be modified to hafnium oxynitrides (HfON) and hafnium lanthanum oxynitrides (HfLaON) to increase dielectric constant for continuous equivalent oxide thickness (EOT) scaling. Bilayer hafnium oxide/titanium oxide (HfO2/TiO2) as a higher ‘k’ dielectric option for FinFET gate length (Lg) scaling is discussed. Interfacial layer (IL) scaling technologies for overall EOT scaling are also covered in this chapter. Ab-initio modeling results to evaluate ternary and quaternary gate oxide for higher ‘k’ dielectrics options, and effective metal work functions calculations to optimize and develop new metal gates are discussed. New gate dielectric reliability failure mechanisms due to three dimensional natures of FinFET devices are reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.