Abstract

Abstract Vanadium phosphates have been established as selective hydrocarbon oxidation catalysts for more than 40 years. Their primary use commercially has been in the production of maleic anhydride (MA) from n -butane. During this period, improvements in the yield of MA have been sought. Strategies to achieve these improvements have included the addition of secondary metal ions to the catalyst, optimization of the catalyst precursor formation, and intensification of the selective oxidation process through improved reactor technology. The mechanism of the reaction continues to be an active subject of research, and the role of the bulk catalyst structure and an amorphous surface layer are considered here with respect to the various V–P–O phases present. The active site of the catalyst is considered to consist of V 4+ and V 5+ couples, and their respective incidence and roles are examined in detail here. The complex and extensive nature of the oxidation, which for butane oxidation to MA is a 14-electron transfer process, is of broad importance, particularly in view of the applications of vanadium phosphate catalysts to other processes. A perspective on the future use of vanadium phosphate catalysts is included in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.