Abstract

Sleep homeostasis is a complex neurobiologic phenomenon involving a number of molecular pathways, neurotransmitter release, synaptic activity, and factors modulating neural networks. Sleep plasticity allows for homeostatic optimization of neural networks and the replay-based consolidation of specific circuits, especially important for cognition, behavior, and information processing. Furthermore, research is currently moving from an essentially brain-focused to a more comprehensive view involving other systems, such as the immune system, hormonal status, and metabolic pathways. When dysfunctional, these systems contribute to sleep loss and fragmentation as well as to sleep need. In this chapter, the implications of neural plasticity and sleep homeostasis for the diagnosis and treatment of some major sleep disorders, such as insomnia and sleep deprivation, obstructive sleep apnea syndrome, restless legs syndrome, REM sleep behavior disorder, and narcolepsy are discussed in detail with their therapeutical implications. This chapter highlights that sleep is necessary for the maintenance of an optimal brain function and is sensitive to both genetic background and environmental enrichment. Even in pathologic conditions, sleep acts as a resilient plastic state that consolidates prior information and prioritizes network activity for efficient brain functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.