Abstract

Stochastic satisfiability (SSAT) is an extension of satisfiability (SAT) that merges two important areas of artificial intelligence: logic and probabilistic reasoning. Initially suggested by Papadimitriou, who called it a “game against nature”, SSAT is interesting both from a theoretical perspective–it is complete for PSPACE, an important complexity class–and from a practical perspective–a broad class of probabilistic planning problems can be encoded and solved as SSAT instances. This chapter describes SSAT and its variants, their computational complexity, applications of SSAT, analytical results, algorithms and empirical results, related work, and directions for future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.