Abstract

Publisher Summary The study of the asymptotic behavior of dynamical systems arising from mechanics and physics is a capital issue because it is essential for practical applications to be able to understand and even predict the long time behavior of the solutions of such systems. A dynamical system is a (deterministic) system that evolves with respect to the time. Such a time evolution can be continuous or discrete (i.e., the state of the system is measured only at given times, for example, every hour or every day). The chapter essentially considers continuous dynamical systems. While the theory of attractors for dissipative dynamical systems in bounded domains is rather well understood, the situation is different for systems in unbounded domains and such a theory has only recently been addressed (and is still progressing), starting from the pioneering works of Abergel and Babin and Vishik. The main difficulty in this theory is the fact that, in contrast to the case of bounded domains discussed above, the dynamics generated by dissipative PDEs in unbounded domains is (as a rule) purely infinite dimensional and does not possess any finite dimensional reduction principle. In addition, the additional spatial “unbounded” directions lead to the so-called spatial chaos and the interactions between spatial and temporal chaotic modes generate a space–time chaos, which also has no analogue in finite dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call