Abstract
Structure-based drug discovery (SBDD) utilizes the three-dimensional (3D) structure of a target protein to identify the lead compounds. This medium is then considered a viable solution based on its availability and correlation with a particular disease. In the case of pandemics like COVID 19, shortening drug development time can save millions of people worldwide; for such a task, classical drug discovery methods will take a long time. Hence, researchers worldwide actively incorporated machine learning (ML) into the drug discovery process, particularly in SBDD, to minimize the lead optimization time. ML uses statistical methods to make a computer perform tasks, take a critical decision, and automate this entire process without being explicitly programmed. With this, the computer can discover new insights about data and unknown patterns crucial to decide the therapeutic use of lead compounds as drugs. The use of ML in the drug discovery field is not new, and it spans an ample research space. By integrating artificial intelligence with ML techniques, viable targets can be found using data clustering, regression, and classification from vast omics databases and sources. In this chapter, we will discuss the methods and applications of ML in SBDD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Protein Molecular and Structural Biology Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.