Abstract
Direct coaptation and interpositional nerve grafting (IPNG) of an injured peripheral nerve is still associated with poor functional recovery. Main reasons for that are thought to be an extensive collateral axonal branching at the site of transection and the polyinnervation of motor endplates due to terminal axonal and intramuscular sprouting. Moreover, severe changes occurring within the muscle after long-term denervation, like loss of muscle bulk and circulation as well as progressive fibrosis, have a negative effect on the quality of functional recovery after reinnervation. We have recently shown that manual stimulation (MS) of paralyzed vibrissal muscles in rat promotes full recovery after facial nerve coaptation. Furthermore, MS improved functional recovery after hypoglossal nerve repair, hypoglossal-facial IPNG of the facial nerve in rat. In contrary, MS did not improve recovery after injury of the median nerve in rat, which is however a mixed peripheral nerve comparing to the facial nerve. It is speculated that manually stimulated recovery of motor function requires an intact sensory input, which is affected in case of mixed peripheral nerves but not in case of pure motor nerves. In this article, we summarize our results of MS in several peripheral nerve injury models in order to illustrate the application potential of this method and to give insights into further investigations on that field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.