Abstract

Computational techniques have gained wider acceptance and application within biomedical and bioengineering applications. Among the most potent numerical techniques for simulating biological flows in complex geometries is the lattice Boltzmann method (LBM). It is appropriate for cases where the implementation of boundary conditions can be difficult when applying other methods and in cases where parallelization of the computations is needed to simulate large systems. In this work, we report on the LBM methodology and applications, drawing mainly from our research on using LBM to simulate flows in scaffolds and perfusion bioreactors. The flow-induced stresses can be predicted with LBM, and vital information about the successful culture of cells can be generated. In addition to the simulation of flow, the LBM can be used in conjunction with particle-based techniques to simulate mass transfer in the flow field. The combination of LBM with Lagrangian particle tracking or Lagrangian scalar tracking is also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.