Abstract

Abstract The search for experimental demonstration of the quantum behavior of macroscopic mechanical resonators is a fast growing field of investigation and recent results suggest that the generation of quantum states of resonators with a mass at the microgram scale is within reach. In this chapter we give an overview of two important topics within this research field: cooling to the motional ground state and the generation of entanglement involving mechanical, optical, and atomic degrees of freedom. We focus on optomechanical systems where the resonator is coupled to one or more driven cavity modes by the radiation–pressure interaction. We show that robust stationary entanglement between the mechanical resonator and the output fields of the cavity can be generated, and that this entanglement can be transferred to atomic ensembles placed within the cavity. These results show that optomechanical devices are interesting candidates for the realization of quantum memories and interfaces for continuous variable quantum‐communication networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.