Abstract
Energy disaggregation, or nonintrusive load monitoring (NILM), aims at estimating the power demand of individual appliances from a household's aggregate electricity consumption. Due to the notable rise in the number of installed smart meters and owing to the numerous advantages of this approach over intrusive methods, NILM has received growing attention in the recent years. In this chapter, after reviewing different categories of household appliances, the state-of-the-art load signatures, including both macroscopic and microscopic features, are introduced. Next, commonly used supervised and unsupervised disaggregation algorithms, which are employed to classify the appliances based on the extracted features, are discussed. Publically accessible datasets and open-source tools, which have been released in the recent years to assist the NILM research and to facilitate the comparison of disaggregation algorithms, are then reviewed. Finally, main applications of energy disaggregation, including providing itemized energy bills, enabling more accurate demand prediction, identifying mal-functioning appliances, and assisting occupancy monitoring, are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.