Abstract

The genes encoding the vasopressin (VP) and oxytocin (OT) precursors are expressed in magnocellular neurons of the hypothalamo-neurohypophyseal system. The neuropeptides have a dual function: (1) they are secreted from the nerve terminals into the systemic circulation to act as hormones on various peripheral target organs; and (2) VP and OT are also released from the dendrites into the central nervous system where they presumably play a role as either neurotransmitters or as modulators of the classical transmitters. Substantial amounts of VP and OT mRNAs are sorted to both axons and dendrites. Since the latter are equipped with components of the translation machinery, the peptide hormone precursors are likely to be locally synthesized in dendrites of magnocellular neurons. Evidence for axonal precursor synthesis, on the other hand, has not been obtained. Subcellular mRNA localization is a complex pathway. It is determined by sequences (cis-acting elements) within the RNA and proteins (trans-acting factors) which interact with these elements in order to guide the molecules to their ultimate destination. We have investigated the mechanisms involved in mRNA targeting in neurons by using VP mRNA as a model system. Recombinant eukaryotic expression vectors harboring the VP cDNA have been microinjected into the cell nuclei of cultured superior cervical ganglion (SCG) neurons. The subcellular distribution of the vector-expressed mRNAs was determined by non-radioactive in situ hybridization techniques. This revealed transport of VP mRNA to the dendrites, but not to the axonal compartment of SCG neurons. A complex dendritic localizer sequence (DLS) that spans part of the coding region as well as the 3'-untranslated region was identified by microinjecting constructs encoding partial sequences of the VP mRNA. In order to characterize trans-acting factors interacting with this element, protein/RNA binding experiments with radiolabeled in vitro synthesized VP RNA probes and proteins extracted from rat brain have been carried out. A protein specifically interacts with the DLS of the VP mRNA but not with sequences that obviously lack a role in subcellular RNA transport. Biochemical purification revealed that this protein is the multifunctional poly(A)-binding protein (PABP). It is well known for its ability to bind with high affinity to poly(A) tails of mRNAs, prerequisite for mRNA stabilization and stimulation of translational initiation, respectively. With lower affinities, PABP can also associate with non-poly(A) sequences. The physiological consequences of these PABP/RNA interactions include functions such as translational silencing. The translational state of mRNAs subject to dendritic sorting is most likely influenced by external stimuli. Consequently, PABP could represent one of several components necessary to regulate local synthesis of the VP precursor and possibly of other proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.