Abstract

We present an outline of the theory of universal Teichmtüller space, viewed as part of the theory of QS, the space of quasisymmetric homeomorphisms of a circle. Although elements of QS act in one dimension, most results about QS depend on a two-dimensional proof. QS has a manifold structure modelled on a Banach space, and after factorization by PSL(2,R) it becomes a complex manifold. In applications, QS is seen to contain many deformation spaces for dynamical systems acting in one, two and three dimensions; it also contains deformation spaces of every hyperbolic Riemann surface, and in this naive sense it is universal. The deformation spaces are complex submanifolds and often have certain universal properties themselves, but those properties are not the object of this article. Instead we focus on the analytic foundations of the theory necessary for applications to dynamical systems and rigidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.