Abstract

In this chapter, a photodetector using a single indium antimonide (InSb) nanowire is shown to effectively detect infrared (IR) signals at room temperature. Indium antimonide nanowires with diameters of 10–35 nm and tens of microns long were grown by the vapor-liquid-solid approach using an InSb powder source and Au catalyst. The quantum confinement can modify the band gap energy when the diameter of the nanowires is smaller than the Bohr radius, making the fabrication of InSb photodetectors covering both near infra red and mid infra red in feasible. Both symmetric and asymmetric InSb nanowire photodetectors were fabricated and investigated under NIR and MIR irradiation. High quantum efficiency was observed for a 10-nm InSb nanowire photodetector at room temperature. The dark current of the nanowire detector was significantly reduced due to the nanoscale diameter of the wire and suppression of phonon scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.