Abstract

We consider the problem of clinical image classification for the purpose of aiding doctors in dermatological disease diagnosis. Diagnosis of dermatological conditions from images poses two major challenges for standard off-the-shelf techniques: First, the distribution of real-world dermatological datasets is typically long-tailed. Second, intra-class variability is large. To address the first issue, we formulate the problem as low-shot learning, where once deployed, a base classifier must rapidly generalize to diagnose novel conditions given very few labeled examples. To model intra-class variability effectively, we propose Prototypical Clustering Networks (PCN), an extension to Prototypical Networks [26] that learns a mixture of “prototypes” for each class. Prototypes are initialized for each class via clustering and refined via an online update scheme. Classification is performed by measuring similarity to a weighted combination of prototypes within a class, where the weights are the inferred cluster responsibilities. We demonstrate the strengths of our approach in effective diagnosis on a realistic dataset of dermatological conditions.44Adapted from Few-shot Learning for Dermatological Disease Diagnosis, Proceedings of the Machine Learning for Healthcare Conference, 2019 [20].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.