Abstract

Thermodynamics plays an important role in the stability analysis of transport and rate processes, and the nonequilibrium thermodynamics approach in particular may enhance and broaden this role. This chapter reviews stability analysis based on the conventional Gibbs approach and the nonequilibrium thermodynamics theory. It considers the stability of equilibrium, near-equilibrium, and far-from-equilibrium states with some case studies. The entropy production approach for nonequilibrium systems appears to be more general for stability analysis. One major implication of the nonequilibrium thermodynamics theory is the introduction of distance from global equilibrium as a constraint for determining the stability of nonequilibrium systems. When a system is far from global equilibrium, the possibility of new organized structures of matter arise beyond an instability point. Nonequilibrium conditions may occur with respect to disturbances in the interior of a system or between a system and its surroundings. As a result, the local stress, strain, temperature, concentration, and energy density may vary at each instance in time. This may lead to instability in space and time. Components of the generalized flows and the thermodynamic forces can be used to define the trajectories of the behavior of systems in time. A trajectory specifies the curve represented by the flow and force components as functions of time in the flow–force space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.