Abstract

Noncoding RNAs are a structural component of the nuclear scaffold and have been implicated in controlling gene expression. In mammals, long noncoding RNAs contribute to the regulation of imprinted gene expression, dosage compensation, development, and tumorigenesis. RNA is also a component of pericentric heterochromatin, and transcripts have been identified at the chromosomal telomeres. The functions of noncoding RNAs are likely diverse, and their underlying mechanisms are just beginning to be understood. Several noncoding RNAs interact with chromatin-modifying complexes and might have a role in targeting chromatin modifications to specific regions of the genome. This suggests a prominent function of RNA in establishing histone modification and DNA methylation patterns in development. Studies on model systems such as X inactivation, the regulation of the Hox clusters, and genomic imprinting have begun to shed light on the role of noncoding RNAs in chromosomal organization and regulation of gene expression. Well-studied examples of noncoding RNAs include Xist, Air, Kcnq1ot1, HOTAIR, and Tsix. Here, a concise review of noncoding RNA function in mammals is given, and the present understanding and future directions of the field are summarized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call