Abstract

AbstractThe Blekinge–Bornholm orogen in southeastern Sweden consists of calc-alkaline to alkali–calcic intrusive rocks, rhyolites and dacites (1.8 Ga) that were structurally reworked under amphibolite facies conditions, affected by migmatization at mid-crustal levels at c. 1.44 Ga and intruded at c. 1.47–1.43 Ga by ferroan alkali–calcic plutons. This Mesoproterozoic orogen is bordered westwards by the Sveconorwegian orogen and northwards, along the boundary with well-preserved 1.8 Ga magmatic rocks in the Svecokarelian orogen, by a stitching c. 1.45 Ga pluton and steeply dipping ductile zones with a south-side-up, dip-slip shear component. A variably developed gneissic fabric (S1) dips gently to moderately northwards and is affected by asymmetrical F2 folds with a southerly vergence. Ductile high-strain zones with top-to-the south shear sense are suggested to correspond at depth to anomalously reflective zones along seismic profile BABEL line A. Open folding of the gneissosity around gently, north-plunging fold axes (F3) completed the ductile deformational evolution. Uncertainty remains about the timing of the amphibolite facies ductile fabric and the D2 folding, which is either late-stage Svecokarelian (c. 1.77–1.75 Ga) or Hallandian (c. 1.47–1.43 Ga). Non-collisional, accretionary orogenic systems are suggested to have operated during both time periods, radical reorganization of the subduction trend accompanying the Mesoproterozoic event.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call