Abstract

Mild traumatic brain injury (mTBI) is a condition of normal neuroimaging, because conventional MRI is not sensitive to brain lesions. Neurocognitive deficits persist for years after injury in 15% of patients. Persistent TAI can continue after the trauma and contribute to progressive disability. Neuropathologic studies underestimate the total axonal damage, by failure to identify fine-caliber unmyelinated fiber. Swollen axons represent the "tip of the iceberg" of damage. Progression of molecular changes, including mitochondrial dysfunction, leads to secondary injuries. Primary low-intensity "invisible injury" is solely detectable at ultrastructural levels. Over the long term, mTBI is not a static event but a progressive injury, increasing risk of neurodegenerative diseases. Lack of evidence of brain injury has led to the development of more sensitive methods: morphometric MRI (VBM, DTI) and functional techniques (fMRI, PET, SPECT). By deformation of the surface of gray matter cingulate gyrus and disruption of long-coursing WM of CB structures, striking the falx, mTBI causes alteration of cingulate functions. Postconcussion, blast, and whiplash-associated disorders are the main mechanisms providing behavior and cognitive symptoms after mTBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.