Abstract

In eukaryotic cells, conserved mRNA surveillance systems target and degrade aberrant mRNAs, eliminating translation errors that occur during protein synthesis and thereby imposing quality control of gene expression. Two such cytoplasmic quality control systems, nonsense-mediated mRNA decay and nonstop mRNA decay, have evolved to target mRNAs with aberrancies in translation. A third novel quality control system has been identified for yeast mRNAs with defects in translation elongation due to strong translation pause sites. This subset of mRNAs with ribosome pause sites is recognized and targeted for degradation by an endonucleolytic cleavage in a process referred to as no-go mRNA decay (NGD). The methods described herein are designed to aid in the study of NGD in Saccharomyces cerevisiae. They include procedures to create an efficient translation elongation pause, assay decay characteristics of NGD substrates, and characterize NGD-dependent endonucleolytic cleavage of mRNA. The logic of the design and methods described can be modulated and used for the identification and analysis of novel RNA quality control pathways in other organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.