Abstract

In this paper, we analyze inflationary parameters and swampland conjectures in the presence of a scalar field and Chaplygin models. We examine inflationary parameters, such as slow-roll parameters, scalar and tensor power spectra, spectral index, and tensor-to-scalar ratio, in the presence of a scalar field and Chaplygin gas models. We also discuss recently proposed swampland conjectures. We assume that the inflationary expansion is driven by a standard scalar field with a decay ratio Γ that has a generic power-law dependence on the scalar field ϕ and that the temperature of the thermal bath T is given by , where is a dimensionless parameter and a is the inflation decay rate. In a scenario where our model operates within a robust dissipative environment , we analyze both fundamental and perturbative dynamics to extract key inflationary parameters. These include the scalar power spectrum , dissipative ratio R, scalar spectral index , tensor-to-scalar ratio r, running of the scalar spectral index , and generalized ratio of the swampland de-Sitter conjecture for three different potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.