Abstract
TFIID is a cornerstone of eukaryotic gene regulation. Distinct TFIID complexes with unique subunit composition exist and several TFIID subunits are shared with other complexes, conveying intricate cellular decision making to control subunit allocation and functional assembly of this essential transcription factor. However, the underlying molecular mechanisms remain poorly understood. Here, we used quantitative proteomics to examine TFIID submodules and assembly mechanisms in human cells. Structural and mutational analysis of the cytoplasmic TAF5-TAF6-TAF9 submodule identified novel interactions crucial for TFIID integrity, and for allocating TAF9 to TFIID or the SAGA co-activator complex. We discover a key checkpoint function for the chaperonin CCT, which specifically associates with nascent TAF5 for subsequent handover to TAF6-TAF9 and ultimate holo-TFIID formation. Our findings illustrate at the molecular level how multisubunit complexes are crafted in the cell, involving checkpoint decisions facilitated by a chaperone machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.