Abstract
The most important interactions between cellular molecules have a high affinity, are unique and specific, and require a network approach for a detailed description. Molecular chaperones usually have many first and second neighbors in protein-protein interaction networks and they play a prominent role in signaling and transcriptional regulatory networks of the cell. Chaperones may uncouple protein, signaling, membranous, organellar and transcriptional networks during stress, which gives an additional protection for the cell at the network-level. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms. This chaperone effect on the emergent properties of cellular networks may be generalized to proteins having a specific, central position and low affinity, weak links in protein networks. Cellular networks are preferentially remodeled in various diseases and aging, which may help us to design novel therapeutic and anti-aging strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.