Abstract

Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

Highlights

  • Ebola (EBOV) and Marburg (MARV) viruses are virulent pathogens that cause severe hemorrhagic disease in humans and non-human primates

  • We have identified BCL2 Associated Athanogene 3 (BAG3) as a novel and functional host VP40 interactor that negatively regulates VP40 viruslike particles (VLPs) and virus egress in a PPxY/WW-domain dependent manner

  • Expression of VP40 alone is sufficient to form viruslike particles (VLPs), which are morphologically indistinguishable from infectious virions and are released from mammalian cells in a manner that recapitulates the release of authentic virus [2,3,4,5,6]

Read more

Summary

Introduction

Ebola (EBOV) and Marburg (MARV) viruses are virulent pathogens that cause severe hemorrhagic disease in humans and non-human primates. Expression of VP40 alone is sufficient to form viruslike particles (VLPs), which are morphologically indistinguishable from infectious virions and are released from mammalian cells in a manner that recapitulates the release of authentic virus [2,3,4,5,6]. Not required for EBOV replication [7], Late (L) domains (which contain PTAP and/or PPxY amino acid sequence motifs) are conserved within EBOV and MARV VP40 and promote efficient egress of VLPs and virus by recruiting host proteins that facilitate virus-cell separation [3,4,6,8,9,10,11]. EBOV and MARV VP40 L-domains hijack specific host proteins associated with the ESCRT pathway, including Tsg101, Alix, and Nedd4 [3,6,8,9,10,11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call