Abstract

Chaperone-mediated autophagy (CMA) contributes to selective degradation of individual soluble proteins in lysosomes. Unique to this type of autophagy is the fact that proteins reach the lysosomal lumen for degradation by directly crossing the lysosomal membrane, in contrast with the vesicle-mediated delivery characteristic of the other types of autophagy. These two characteristics – selective targeting and direct translocation of substrates – determine the contribution of CMA to different physiological functions and the type of pathological conditions associated with CMA dysfunction. In this review, we briefly revise recent findings on the molecular mechanisms behind CMA function, and describe the physiological relevance of the selective lysosomal degradation through this pathway. We also comment on the cellular consequences of CMA malfunction and on the connections already established between CMA dysfunction and different human disorders, with special emphasis on neurodegenerative diseases. This article is part of a Special Issue entitled “Autophagy and protein degradation in neurological diseases.”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.