Abstract
Alpha4 and beta2 nicotinic acetylcholine (nACh) receptor subunits expressed heterologously in Xenopus oocytes assemble into a mixture of receptors with high and low agonist sensitivity whose relative abundance is influenced by the heteropentamer subunit ratio. We have found that inhibition of protein kinase A by KT5720 decreased maximal [3H]cytisine binding and acetylcholine (ACh)-induced current responses, and increased the relative proportion of alpha4beta2 receptors with high agonist sensitivity. Mutation of serine 467, a putative protein kinase A substrate in a chaperone protein binding motif within the large cytoplasmic domain of the alpha4 subunit, to alanine or asparate decreased or increased, respectively, maximal [3H]cytisine binding and ACh response amplitude. Expression of alpha4S467A mutant subunits decreased steady levels of alpha4 and the relative proportion of alpha4beta2 receptors with low agonist sensitivity, whilst expression of alpha4S467D increased steady levels of alpha4 and alpha4beta2 receptors with low agonist sensitivity. Difopein, an inhibitor of chaperone 14-3-3 proteins, decreased [3H]cytisine binding and ACh responses and increased the proportion of alpha4beta2 with high sensitivity to activation by ACh. Thus, post-translational modification affecting steady-state levels of alpha4 subunits provides a possible means for physiologically relevant, chaperone-mediated variation in the relative proportion of high and low agonist sensitivity alpha4beta2 nACh receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.