Abstract

Elongation factor G(EF-G) and initiation factor 2 (IF2) are involved in the translocation of ribosomes on mRNA and in the binding of initiator tRNA to the 30 S ribosomal subunit, respectively. Here we report that the Escherichia coli EF-G and IF2 interact with unfolded and denatured proteins, as do molecular chaperones that are involved in protein folding and protein renaturation after stress. EF-G and IF2 promote the functional folding of citrate synthase and alpha-glucosidase after urea denaturation. They prevent the aggregation of citrate synthase under heat shock conditions, and they form stable complexes with unfolded proteins such as reduced carboxymethyl alpha-lactalbumin. Furthermore, the EF-G and IF2-dependent renaturations of citrate synthase are stimulated by GTP, and the GTPase activity of EF-G and IF2 is stimulated by the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. The concentrations at which these chaperone-like functions occur are lower than the cellular concentrations of EF-G and IF2. These results suggest that EF-G and IF2, in addition to their role in translation, might be implicated in protein folding and protection from stress.

Highlights

  • The elongation phase of protein synthesis is promoted by two G proteins, elongation factor EF-Tu, 1 which delivers aminoacyl tRNAs to the ribosome, and EF-G, which catalyzes the translocation step, during which the A- and P-site tRNAs move to the P and E sites of the elongating ribosome, respectively, and mRNA is advanced by one codon [1,2,3]

  • We show that EF-G and initiation factor 2 (IF2), in a manner similar to that of molecular chaperones, increase the refolding of unfolded proteins, protect proteins against thermal denaturation, and form complexes with unfolded proteins

  • They were unfolded in the presence of 8 M urea, and allowed to refold upon dilution of the denaturant, in the absence or in the presence of EF-G

Read more

Summary

Introduction

The elongation phase of protein synthesis is promoted by two G proteins, elongation factor EF-Tu, 1 which delivers aminoacyl tRNAs to the ribosome, and EF-G, which catalyzes the translocation step, during which the A- and P-site tRNAs move to the P and E sites of the elongating ribosome, respectively, and mRNA is advanced by one codon [1,2,3]. The stimulation of citrate synthase renaturation by EF-G in the absence of nucleotide or in the presence of GDP or GTP␥S was 2.6-, 2.4-, and 1.6-fold, respectively (Fig. 2A).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.