Abstract

The cis/trans isomerization of peptide bonds before proline (prolyl bonds) is a rate-limiting step in many protein folding reactions, and it is used to switch between alternate functional states of folded proteins. Several prolyl isomerases of the FK506-binding protein family, such as trigger factor, SlyD, and FkpA, contain chaperone domains and are assumed to assist protein folding in vivo. The prolyl isomerase activity of FK506-binding proteins strongly depends on the nature of residue Xaa of the Xaa-Pro bond. We confirmed this in assays with a library of tetrapeptides in which position Xaa was occupied by all 20 aa. A high sequence specificity seems inconsistent with a generic function of prolyl isomerases in protein folding. Accordingly, we constructed a library of protein variants with all 20 aa at position Xaa before a rate-limiting cis proline and used it to investigate the performance of trigger factor and SlyD as catalysts of proline-limited folding. The efficiencies of both prolyl isomerases were higher than in the tetrapeptide assays, and, intriguingly, this high activity was almost independent of the nature of the residue before the proline. Apparently, the almost indiscriminate binding of the chaperone domain to the refolding protein chain overrides the inherently high sequence specificity of the prolyl isomerase site. The catalytic performance of these folding enzymes is thus determined by generic substrate recognition at the chaperone domain and efficient transfer to the active site in the prolyl isomerase domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call