Abstract

Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species.

Highlights

  • Chaparral is the most abundant plant community in California and the shrubs that dominate this community are adapted to hot and dry summers and periodic fires [1]

  • Pests and pathogens are often a contributing factor in mortality of weakened plants [14,15]. Another hypothesis is that long-term droughts may cause some species to have a negative carbon balance and exhaust their carbohydrate stores leading to mortality [12], the extent that carbon starvation may lead to mortality is controversial [16] as carbon is generally not the limiting factor under stress conditions [17]

  • Shrubs had a mean height of 2.29 ± 0.07 m (±SE), mean basal area of 0.061 ± 0.009 m2 (±SE), and mean crown area of 2.41 ± 0.23 m2 (±SE) (Fig 2A, 2B and 2C)

Read more

Summary

Introduction

Chaparral is the most abundant plant community in California and the shrubs that dominate this community are adapted to hot and dry summers and periodic fires [1]. Global-change type droughts (the combination of low precipitation and warmer temperatures) in recent years have led to woody plant die-offs in many areas across the globe (e.g., [2,3,4,5,6,7]). These large scale dieoffs impact the structure, composition and dynamics of plant communities; impacts that alter ecosystem function and threaten biodiversity and the wellbeing of humans [8]. Hydraulic failure, pathogen attack, and carbohydrate depletion, are non-mutually exclusive and may act together [18,19,20,21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call